Nonlinear Diffusion and
Image Contour Enhancement

G.I. BARENBLATT
University of California at Berkeley, USA

AND J.L. VAZQUEZ
Universidad Auténoma de Madrid, Spain

FEBRUARY 20, 2003

ABSTRACT

The theory of degenerate parabolic equations of the forms
u = (P(ug))r and v = (P(v)) s

is used to analyze the process of contour enhancement in image processing, based on the
evolution model of Sethian and Malladi. The problem is studied in the framework of
nonlinear diffusion equations. It turns out that the standard initial-value problem solved
in this theory does not fit the present application since it it does not produce image
concentration. Due to the degenerate character of the diffusivity at high gradient values,
a new free boundary problem with singular boundary data can be introduced, and it can
be solved by means of a non-trivial problem transformation. The asymptotic convergence
to a sharp contour is established and rates calculated.
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1 Introduction. A model for contour enhancement

This paper is devoted to study the behaviour of the solutions of some degenerate parabolic
equations with moving boundaries which appear in describing the technique of contour en-
hancement in image processing. Indeed, computer vision has become in recent decades a
mathematical discipline which relies on the differential-geometric approach. More specif-
ically, an appropriate technique of image processing consists of formulating a partial
differential equation of evolution type for the image intensity, u(z,y). This function, also
called the grey level, takes values in the interval 0 < u < 1 and is defined on a two-
dimensional image domain, 2. The usual evolution model leads to a nonlinear equation
of parabolic type, possibly degenerate or singular. The nonlinearity is created by the law
relating the image intensity flux to the image intensity.

It has been observed by Perona and Malik [PM], 1990, that for a suitable choice of
this fundamental nonlinearity there appears an effect of enhancement of image edges that
has a strong interest in the application to processing, denoising and recognition of images.
The Perona-Malik Anisotropic Diffusion model has had a deep influence in the field, being
at the source of many later developments. The model proposed by Malladi and Sethian
[MS] leads (after proper scaling) to the following equation for the image intensity:

(1.1) u, = (14 |Dul?)? k

where Du denotes the spatial gradient of u, and x denotes the curvature of the surface
z = u(x,y). The equation represents movement by curvature (curvature flow) and can be
written as

1.2) . (14 w2 ) s — 2Uptytigy + (14 u2)uy,
. t = .
L+ui +ug
We consider here the more general flow given by equation u; = (1 + |Du|?)(+?)/2k where
p is a constant parameter. In other words, we study the equations
(1+ uZ)um — Uy Uy Uy + (1 + u2)uy,
(1 +u2 +u2)tte

(1.3) Uy =

with parameter « = —p/2. Along with the former case p = a = 0, the case p = —2,
a = 1 has also attracted the attention of researchers (Beltrami flow, cf. Sochen et al.
[SKMS]).

The asymptotic treatment of these models done in the papers [MS, SKMS] shows
the enhancement of the intensity contrasts by formation of regions of large intensity
gradients, i.e., the normal component of the image intensity gradient becomes quite large.
This phenomenon was analyzed in [B01], where a further simplification of the model
was proposed in order to focus on the boundary layer where large gradients concentrate.
Arguing locally around a sharp gradient point and choosing the z-axis as the direction



normal to the boundary layer or front, we may disregard the effect of y derivatives with
respect to the z derivatives in (1.3). In this way we get the reduced equation, which is
just the one-dimensional version of (1.3)

ul’l’

(1.4) Uy = Wa

where we have neglected u,, u,,. Different dimensional constants appear in the model,
but they have been scaled to unity here without loss of generality. The mathematical
problem consists in solving this equation with suitable boundary data, namely, © = 0 on
the left-hand side of the contour and u = 1 on the right-hand side (be that a finite or an
infinite distance), and initial conditions

u(z,0) = up(x),

satisfying 0 < uy < 1 and uf, > 0 in an interval I = (a,b) and constant values otherwise,
zero to the left, 1 to the right. As was pointed out in [B01], the phenomenon of gradient
enhancement takes place in this model (in a proper setting) for all & > 0: the spatial
gradient of the solutions, u,, increases with time, and its support shrinks. Indeed, we show
below that such a behaviour can be observed in the larger exponent range o« > —1/2. The
conditions on uy can be relaxed, but then problems arise. Thus, the less stringent size
restriction 0 < uy < 1 or the lack of monotonicity create interesting alternatives, that will
also be briefly discussed.

Let us remark that this is not the only model which uses nonlinear diffusion equations
for image processing and enhancement. We refer for alternatives to the works of Alvarez,
Lions and Morel [ALM] and Caselles et al. [CMS], where further references are found. Let
us point out that in [ALM] a fundamentally different assumption is made, namely that
the flux is perpendicular to the gradient, and the basic equation is substantially different
from the class (1.3) treated here. On the other hand, we mention that the mathematical
difficulties of the original model by Perona and Malik have been further investigated by
several authors, like [Kch] and [WB]. The application of Nonlinear Diffusion to Image
Processing is a every active concern with many issues being discussed in the literature,

cf. e.g. [KB, Wck].

2 Asymptotic self-similarity and enhancement

Evolution equations like (1.4) and many other variants have been studied and are known
in the literature under the general name of nonlinear parabolic equations of diffusion type,
or nonlinear diffusion equations for short. They are typically used in describing processes
of mass diffusion or thermal propagation. A quite general one-dimensional form popular
among PDE experts is

up = (a(x, t, u, ug)),



with suitable conditions to make it parabolic, at least in a formal sense, like da/0u, > 0.
However, many practical applications (as in the present case) involve functions a for which
da/du, > 0, but the values zero or infinity can also be taken, and then the equations
are known as degenerate parabolic or singular parabolic resp., c¢f. [DB, Ka|. In any case,
a general feature of this wide class of equations is the diffusive character, which roughly
means the spreading of the level sets of the solutions as time advances. This property goes
squarely against the desired enhancement, therefore an extra mechanism must be present
if enhancement is to occur. We recall that in the Perona-Malik model this mechanism
was negative diffusion.

In the range of exponents o > 0, equation (1.4) falls into the class of degenerate
parabolic equations with degeneracy at u, = 0o, precisely the limit value which is of con-
cern in contour enhancement. An investigation of the phenomenon of gradient enhance-
ment in equation (1.4) is performed in the paper [B01] by relating it to the convergence
toward self-similar asymptotics of an approximate model. It goes as follows: the observed
evolution of the solutions towards a configuration with large gradients makes it plausible
to further simplify the expression 1+ u2 in (1.4) into u2, so that the relevant reduced
equation becomes
(2.1) Uy = u;Q(HO‘) Ugy -

It is further observed that self-similar solutions for this equation with end-levels u = 0
and u = 1 exist for all @ > 0 and exhibit the similarity form

(2.2) u(w,t) = F(§), &= (v — o) (t+t9)"/*,

where xy and ¢, are parameters to be fixed, and the profile F'(£) is an increasing function
joining the levels F' = 0 at a finite distance ¢ = —c < 0 to the level F' =1 at £ = c.
At these levels, which are taken at a finite distance & = +c¢, the gradients are infinite
(actually, the analysis in [BO1] deals with decreasing profiles joining v = 1 to u = 0 but
these two problems are obviously equivalent after a mirror symmetry. We have chosen the
increasing option to avoid chasing around many minus signs). The scaling implies that

ug (,t) = (t + to) /2 F'(€), €= (x — xo) (t + o) /%,
which shows that the solution is concentrated in an increasingly narrower strip
(2.3) S = {(x,t) : |z — mo| < c(t+ 1)~}

with gradients that diverge like t'/2® as t — oo. Let us remark that the asymptotic
divergence of the gradients is known to be exponential for & = 0, but the form is not self-
similar of the same type, as we will see below. An important feature to be remembered of
these solutions, along with the divergence as ¢t — o0, is the infinite gradient condition at
the end-points of the domain of definition. On the other hand, these self-similar solutions
represent the intermediate asymptotics of the problem with more general data. This is
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demonstrated numerically in [BO1] when infinite flux data are imposed at moving end-
points located at finite distance.

With these preliminaries we are ready to attack the construction and analysis of solu-
tions with steep fronts for a general class of equations which includes (2.1) and (1.4) and
is natural for our application, and with the general data mentioned in the Introduction.
We use the theory of nonlinear diffusion equations which has been strongly developed in
the last decades. It turns out that the standard initial value problem solved in this theory
does not suit our model, since it leads to dispersion instead of concentration of the image.
A new free boundary problem with singular boundary data is then introduced and solved
by means of a number of non-trivial problem transformations available for nonlinear diffu-
sion problems, a subject that is developed in detail in [V03c]. The concentration property
of these solutions is possible thanks to the degenerate character of the diffusivity for high
gradient values.

Our theory below covers existence and uniqueness of solutions of suitable problems,
existence and behaviour of the bounding interfaces, and large-time behaviour. In particu-
lar, we obtain the rates of convergence of the interfaces, an important question for image
enhancement.

3 Nonlinear diffusion equations

As we have just said, we are going to construct a mathematical theory for the one-
dimensional evolution problem with initial and boundary conditions of the type mentioned
above, but replacing the special class of equations (1.4) by the wider class of nonlinear
diffusion equations of the form

(3.1) u = (B(u,)).

The nonlinear function ® expresses the dependence of the image flux on the gradient of
the image intensity. It can be called the flux law of our process, or also the constitutive
function. In this general setting, ® can be any increasing real function defined in a suitable
interval of gradients. We will assume for convenience that

(Hy) @(s) is C* smooth and strictly increasing in the intervals 0 < s < oo and
—00 < s < 0, allowing for a quite arbitrary behaviour as s — 0 or |s| — oc.

In our opinion, this level of generality instead of obscuring the problem makes more
apparent the relation between nonlinear diffusion and contour enhancement. Slightly
more general assumptions can be made on ®, but they are unessential for our present
purposes, cf. Section 11.

We want to characterize the class of those ® for which we can construct solutions
with gradient-enhancement. We also want to describe the rates at which the formation of
steep profiles takes place, thus justifying and extending the results of [B01] to the actual
equations like (1.4), and to general data. The mathematical problem we pose consists in



solving the nonlinear parabolic equation (3.1) with initial conditions
(3.2) u(z,0) = ug(x)

satisfying 0 < uy < 1 and other suitable conditions (see below), and boundary data u = 0
on the left-hand side of the contour and v = 1 on the right-hand side. Regarding the
initial data, we remark that we are mainly interested in monotone solutions, i.e., u, > 0,
for equation (1.4), and this condition will naturally follow from a similar monotonicity
condition on the initial data. As for the boundary conditions, it turns out that, depending
on the form of ®, the boundary can be chosen to be located either at infinity or at a finite
distance. This latter case will be the one of interest for us, and then the problem must
be properly posed as a free-boundary problem.

Let us recall the simplest examples of ® and some of the difficulties we will encounter.
Indeed, a quite important and simple example is the power function, that we write as
®(s) = (1/m)s™, defined for s > 0, so that it agrees with (2.1) with m = —1 — 2« since
®'(s) = s™~ L. There is in principle no reason to restrict the generality of the exponent m
in the mathematical treatment to follow, and this will lead to quite different behaviour
types inside this family. The case m = 0 is included in the form ®(s) = log(s), i.e.,
®'(s) = 1/s. Note that in the cases with m < 0 the function ® is negative, but the
important quantity for the parabolic character of the equation, i.e., ®'(u,), is always
positive. Finally, we note that equation (1.4) corresponds to ®'(s) = (1 4 s2)~(17); it
degenerates as s — oo in the prescribed range a > 0, even if a > —1, but the equation is
is perfectly parabolic in regions of bounded u,.

3.1 Non-monotone solutions

The above statements are made on the assumption that the solutions are monotone,
u, > 0, which is not unjustified in our problem setting but restricts the mathematical
generality. When considering non-monotone solutions it is customary in the nonlinear
diffusion literature to extend the power nonlinearity to arguments s = u, < 0 in the
simplest symmetric way:

(3.3) B(s) = 5" s,

which gives ®'(s) = |s|™"!, always nonnegative. This definition poses no problem when
m > 0 and solutions with changing sign exist corresponding to initial data with the same
property. However, we are interested in exponents m < 0 (so-called very fast diffusion
in the literature) where @' is singular at s = 0, and the whole function ® is no more
monotone. The difficulty has been studied in [RV02] leading to the consequence that
solutions with changing sign do not exist, even in the weak sense when m < 0. This
is a consequence of the singularity of the equation at the level u, = 0 and does not
affect equation (1.4). Due to this obstruction, we will concentrate here on problems with
monotone solutions.



4 Second formulation as a nonlinear diffusion equation

If we formally differentiate equation (3.1) with respect to  and put v = u,, we obtain
the equation satisfied by the image intensity gradient:

(4.1) Uy = Cb(v)xxa

which is usually called the nonlinear filtration equation, NLFE, and is the most standard
class of nonlinear diffusion equations studied in the literature. We can call it in this
context the “differentiated equation”. Inversely, we can recover the u formulation from a
solution v(x,t) for (4.1) by means of the rule

(4.2) u(x,t) =c+ /F(U dz + ®(v), dt),

integrated along any curve [' in the domain of definition of v which joins a fixed point
(xg,tp) to the generic point (z,y), cf. [RV95, V03¢]. The constant ¢ is the value of u at
(x9,to) to be chosen at will in principle. The calculation is justified for smooth solutions
v and smooth ®, but holds in a much wider context.

Monotone solutions u for equation (1.4) translate into nonnegative solutions v for
equation (4.1), and conversely. In this context, u is usually viewed as the mass function
for v, since when we take I" to be a segment of the line ¢t = ¢, formula (4.2) becomes

u(z,to) — u(wo, ty) = /xv(y,to) dy.

Zo

The phenomenon of gradient enhancement can be then translated into usual diffusion
parlance as mass concentration. We will keep in the sequel the denomination intensity or
image intensity for the solution u of equation (3.1), and we will view the solution v = u,
of (4.1) as the intensity gradient. In that context ®(u,) = ®(v) is the intensity flux.
Finally, ®'(u,) = ®'(v) is the diffusivity.

5 Solutions of Type |

We now try to apply the more standard theory of nonlinear diffusion equation to solve
the evolution problem motivated by the application in the Introduction. We show next
that this implementation can be performed in a rather standard way for a wide class of
®’s, but such a process gives an evolution with no concentration effect, hence useless for
our purposes in image processing. The reader already familiar with diffusion theory may
check the contents of Theorem 5.1 and skip the rest of this section.



5.1 Simplest setting

Generalizing the well-known properties of the heat equation (the choice ®(s) = s), we
consider first the case where ® is a C' function and ® does not vanish. We pose the
Cauchy problem for equation (3.1) in the whole line x € R for ¢ > 0 with bounded initial
data 0 < ug < 1, and get a unique smooth solution u(z,t) defined in @ = R x (0, 00) and
such that 0 < u < 1, u is smooth for all x € R and ¢ > 7 > 0. We can also work with
equation (4.1): then, if vy = ug, is locally integrable (a Radon measure will also do) and

such that
/vo (x)dz =1,
R

the solution v(x,t) is smooth in @ and satisfies the same type of integrability condition,
Jg v(z,t)de = 1. For solutions v > 0 this is called conservation of mass. Using formula
(4.2) we obtain a smooth solution u(z,t) in ) such that the initial condition

ul,0) = wn(o) = [ " woly) dy

holds, as well as the end conditions

lim u(x,t) =0, lim u(z,t)=1,

Tr—r—00 Tr—r0o0

hold locally uniformly in time. On the other hand, vy > 0 implies that v, = v > 0, which
by the Strong Maximum Principle implies u, > 0. It follows that 0 < u(z,t) < 1 in Q.
Note that, due to the smoothness condition on @, these solutions are smooth in (z,t) for
all x € R and ¢ > 0, even if the initial data are not.

5.2 Dispersion of solutions with time

At first glance, the type of solution we have constructed seems to solve our image problem.
However, it lacks a basic ingredient, i.e., the eventual concentration of intensity gradients.
On the contrary, if we consider the heat equation u; = u,,, the solutions, which can be
expressed in terms of error functions, spread in time and its gradients go to zero. for
instance, if vy = ug, is integrable, then v(x,t) goes to zero as ¢ — oo at a rate of the
order of t /2, and takes on a Gaussian space shape,

v(z, t)t? ~ exp(—a?/4t).
And a similar result (with possibly different rates) applies to more general data uy having
definite limits at +o00, and to all the functions ® of the above class.
5.3 Extension of Type I solutions to other ¢

Even if this is not the class of solutions we are looking for, we pursue a bit further the
analysis, since it is the standard class found in studies of nonlinear diffusion or thermal



propagation. The study will also serve for comparison with the “correct” solutions of
Type II. However, the reader may choose to skip this the rest of the section and proceed
with Section 6.

The class of constitutive functions ® for which there exists a class solutions 0 < u <'1
with a dispersive character can be extended to include a quite general choice of ® on the
condition of allowing for a suitably generalized concept of solution. Thus, it is well-known
following Bénilan, Crandall and others [Be72, BC| that we may take as ® any continuous
nondecreasing function and the Cauchy problem is then well-posed in the class of so-called
mild solutions with L'(R) data. Actually, ® can be allowed to be discontinuous but this
will be of no particular interest here; on the contrary, we will keep the assumption of
smoothness and strict monotonicity for 0 < s < oo for simplicity of presentation (and
since it is satisfied in the application we are dealing with).

Let us comment on the main properties of the solutions for this class of equations. For
the case of power nonlinearities ®(s) = s™/m, s > 0, mentioned above, rather complete
details are known, [Ar, Ka, V92]. We can consider that m is a real parameter, positive in
principle but not necessarily as we will see. The definition is extended to solutions with
negative values as in formula (3.3). Thus, for m > 0 equation v; = (v™),, (or better,
v; = (Jv|™ 1v),e) generates a positive semigroup of contractions in the space L'(R). In
other words, for every vy € L'(R) there exists a unique function v € C([0,00 : L'(R)),
v > 0 with v™ € Lj,.(Q) such that the equation is satisfied in the sense of distributions
in Q@ = Rx (0,00), the initial data are taken in the L'(R)-sense, and the map vy — v(-, t)
is an L'-contraction. Moreover, the total mass is conserved

/Ooov(a:,t) iz = /000 vo() da.

In our application we still have to impose the extra condition of total mass 1, and then
we recover the image intensity by means of the formula

u(x, t) = / v(a',t) da,
—00
and the intensity level goes from uw = 0 at minus infinity to v = 1 at infinity. The
asymptotic behaviour of these solutions has been carefully calculated in the literature, cf.
e.g. [An2, FK, V03a]: solutions v(-,¢) with finite mass go zero uniformly as

(5.1) v(z,t) ~t77, = ——,

which in the notation of the Introduction means v = —1/2a. Actually, the asymptotic
rate comes from comparison with the source-type self-similar solutions [Bbk| which take
the form

v(z,t) =t77G(xt™7)
for a certain symmetric profile function G' € C,(R) such that G(§) — 0 as & — oco. This
formula suggests that the behaviour will be maintained as long as v > 0, hence, as long



as m > —1, and this turns out to be true (for the study when —1 < m < 0 cf. [ERV]).
Indeed, this exponent range is optimal since there are no solutions with finite integral for
m < —1.

Let us look a bit closer at the kind of initial data that we want to consider in the
outmost generality. We recall that we want u( to be increasing and bounded between 0
and 1. Hence, vy = ug has to be defined and locally integrable, or at most be a measure,
in an interval (a,b) with possible divergence at the end-points, but anyway with finite
integral. Existence of solutions (with vy extended all of R with value 0 otherwise) offers
no problem in all the range m > —1 and the solutions are bounded for all £ > 0. But large
values will be the origin of the new class of solutions to discuss in the following sections.

By integration we obtain a solution of the problem

up = D(uy), in @ =R x (0,00)
(Pr) u(z,0) =up(z) for z€R
u(z,t) > 0,

where ug is any nondecreasing continuous real function joining the levels uy = 0 at x =
—o0 to ug = 1 at * = oo. This is what we term as Solutions of Type I. Note that
integration of the self-similar profile gives for u the form

u(z,t) = F(zt™)

where F'is a primitive of G with F'(—oo) = 0, F(co) = M that we want to normalize to
M =1.

Theorem 5.1 Let us consider the initial-value for equation (3.1) posed in Q@ = Rx (0, 00)
with power function ®(s) = s™/m. If m > —1 then for every nondecreasing ug with
up(—00) = 0, ug(co) = 1, there exists a unique continuous weak solution in the sense
u(z,t) > 0 such that u(-,t) jumps from 0 to 1 as x ranges over the line x € R. If m <0
the last condition is essential to ensure uniqueness. This class of solutions has bounded
gradients for strictly positive times (t > 7 > 0), and spreads in space as time advances
and the asymptotic decay formula (5.1) holds for v = u.

On the contrary, if m < —1 solutions for this initial-value problem with bounded data
do not exist.

The results of the power case reflected in this theorem can be generalized to equations
with more general ®. Only the behaviour of ®(s) at s = 0 and s = co will determine the
different behaviour types. In order to tackle the first, we assume that the initial data (and
hence the solutions) v are bounded. Then it is known that the condition for existence
with finite mass is

(5.2) /08 P'(s)sds < 0.

The question of large arguments is similar to the power case. These issues will be discussed
at length in [Vbk]. For a study of these questions in the class of self-similar solutions cf.
[EV].
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5.4 Existence of sharp interfaces

There is an interesting subclass of equations (3.1), or (4.1), where sharp interfaces appear.
Let us look first at power nonlinearities. Indeed, for exponent m > 1 solutions of the
Cauchy problem for equation (3.1) with initial data having compact support will keep this
property for all times, while infinite propagation occurs whenever m < 1 c¢f. [BV, Ka].
In the first case, given an integrable function uy > 0 with integral 1 the solution of the
problem can be seen as the a classical solution equation (3.1) in a domain

Q={(x,t): =l(t) <z <r(t)},
with initial conditions u(x,0) = u¢(z) and boundary conditions

u(z,t) =0, P(uy) =0 for = =1(t),
{ u(z,t) =1, @(u,) =0 for = =r(t).

The lines z = [(t) and & = r(t) are called interfaces or moving boundaries and are
completely determined by the over-specified conditions. They are known to be smooth
(analytic) functions of ¢ [Anl, AV], and diverge as ¢ — oo like O(t7), thus giving a
quantitative estimate of the dispersion effect. We remark in passing that the presence of
interfaces means also that the equation is not uniformly parabolic at those points, and
consequently the solutions have limited regularity.

On the other hand, when m < 1 the same Cauchy problem leads to positive solutions
with [(t) = —oo and r(t) = co. The property of null flux is equivalent to imposing u, = 0
at +00, a quite natural condition in view of the values u = 0,1 at +o0. This condition
is automatic for m > 0. However, for m < 0 we can have new solutions with decreasing

total mass, i.e., such that
d

dt
and they can be even forced to vanish identically in finite time by controlling the outgoing
flux at x = +00. We refer to [RV93, RV95] for a detailed analysis. In the integrated version
they would lead to solutions with a restricted grey range. For the more general class of
® mentioned above the condition to have finite interfaces is

(5.3) /08 ®'(s) ds < oc.

S

v(z,t)dx <0,

The fact that this condition is necessary and sufficient can easily seen on the family of
traveling waves. The property was first pointed out in [OKC].

6  Solutions of Type Il. Conjugate formulations

We now address the main question of this paper, the construction of solutions with large
gradients, appropriate for the contour enhancement problem:.
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6.1 Basic Free Boundary Problem. It is formulated as follows:

Given an increasing function ug(x) defined in an interval (a, b) with end values u(a+) = 0,
u(b—) = 1, to find a continuous function u(x,t) and continuous curves x = [(t) and
x = r(t) such that

(i) 1(0) = a, r(0) = b, and I(t) < r(t) for some time interval t € (0,T).
(ii) u solves the following problem in Q = {(z,t) : 0 <t <T, I(t) <z <r(t)}:

t = P(uy), in
p (x,0) = up(z) for a <z <b
() w(l(t),t) = #) =400 for 0<t<T,
( ),t) =400 for 0<t<T.

Such a triple (u,l,r) is called a solution of Type II. The regularity required from u as
a solution of the problem will depend on the generality of the data. At least u will be
continuous in the closure of €2. Furthermore, to avoid unnecessary generality we will ask u
to be smooth in the interior of €. Finally, the requirement of monotonicity is not intrinsic
from the mathematical point of view, but it suits the application and allows for the use
of the powerful conjugate formulations. Here is the existence result that we are going to
prove:

Theorem 6.1 Let ® be a flur function that is defined, smooth and with ®'(s) > 0 for all
s > 0. Assume moreover that ®(o0) is finite. Then for every increasing function ug(x)
defined in an interval [a,b] with u(a) = 0, u(b) =1 and uj > ¢ > 0 there exists a unique
continuous function u(x,t) which is defined in a set Q0 as above, is smooth and strictly
monotone in x for 0 < u < 1, and there exist continuous curves l(t) and r(t), such that
the triple (u,l,7) solves problem (Py) in Qr. Besides, uy > ¢ > 0 whenever 0 < u < 1.

We will also show in our construction that the boundary curves are monotone: [(t) is
nondecreasing, r(¢) nonincreasing. On the other hand, there is the problem of determining
whether 7' if finite or infinite. This depends on ® as we will see below.

6.2 Conjugate formulation

When dealing with smooth monotone solutions u, > 0 we can invert the variables x and
u and write © = X (u,t). Then u, -z, = 1, and after some computations we get the partial
differential equation satisfied by x a a function of u and ¢:

(6.1) rr = (V(2u))u,
where W is the conjugate flux function (conjugate to @), defined for s > 0 as

(6.2) U(s) = —B(1/s).
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Differentiation of equation (6.1) with respect to u gives rise to the differentiated conjugate
equation for w = 0X /0u as a function of v and ¢:

(6.3) wy = (T(w)) s

We complete the list of related equations with the direct differentiated equation for v =
Ou/0x, already seen:

(64) Uy = (q)(v))wwa

and then v = 1/w. It is important to point out that these relations are equivalent to the
well-known Bécklund transform [BK] between the main variables v and w of the second
and fourth formulations. Indeed, we have

1
7), u(z,t) :c+/F(de+(I>(U)xdt).

v t) = w(u,t

The reader is referred to [RV95, V03¢, V03d] for other applications of this technique.

6.3 Posing and solving the conjugate problems

We now show how to use the conjugate formulations to solve the original problem. We
assume that ® a flux function defined for all s > 0 and such that ®(oco) is finite, say,
®(o0) = 0. Then WU(s) is continuous at s = 0 and ¥(0) = 0. This is the class of flux
functions for which the conjugate problem looks simpler. Since we have assumed that ®
is smooth, so is V¥ in its domain of definition.

(i) Since we are interested in solving the conjugate problem as an auxiliary step for
Problem (Py;) we will relate the initial values for the function w(u,t) to ug as follows.
Assuming that ug is continuous and strictly monotone in the interval I = {a < = < b},
with ug(a) = 0, ug(b) = 1, and C* smooth inside I with duy/dz bounded below away
from zero, we define the inverse function z = h(u) = uy *(u) : [0, 1] — [a, b].

1
(6.5) wo(u) = m,

which is defined for 0 < w < 1 and is positive, bounded and smooth inside, i.e., for
u e (0,1).
(ii) We then solve the conjugate problem

wy = V(w)yy for 0<u<1,t>0
(Pe) w(u,0) =we(u) for 0<u<1
w(u,t) =0 for w=0,1.

As initial data we choose a nonnegative, bounded function wy. Under these conditions
Problem (P,) has a unique solution by virtue of well-known nonlinear parabolic theories
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described in the previous section, cf. [Be72, BC, BG]; but note that now we are dealing
with the homogeneous Dirichlet problem. The solution can be obtained as limit of the
solutions w.(u,t) > ¢ of the nondegenerate problems with initial data wg . (u) = wo(u) +e,
€ > 0. In the monotone limit we get

llgé we(u, t) = w(z,t)

which is nonnegative, continuous and bounded. Under the additional assumption that wy
is locally bounded away from zero, it is easily proved that the solution w(u,t) is positive,
hence classical, in a strip

Sr={(u,t): 0<u<l1l 0<t<T}.

(iii) We also need to know something about the large time behaviour of the solutions to
this problem. In the full generality (¥ continuous at s = 0), it can be proved rather easily
that w(x,t) goes to zero in uniform norm as ¢ — oo. However, the rate depends on ¥, as
we will see in detail in the next sections. Indeed, depending on V¥ it may happen that the
solution vanishes identically after a finite time 7" > 0 (so-called finite-time extinction).
For power nonlinearities ¥'(s) = s?~! this happens iff 0 < ¢ < 1, [BH]. On the other
hand, it is well-known that for ¢ > 1 the decay rate is O(t='/(¢=1), while for ¢ = 1 it is
exponential.

(iv) Next, we pass to the integrated version using the formula

(6.6) z(u,t) = /Fwdu—i-\lf(w)u dt,

where I' is any piece-wise smooth curve in (u,t) space starting from a fixed point, say
u=1/2,t =0 and arriving at a generic point (u,t). In this way we obtain a solution of
the integrated equation z; = (®(z,))y, much as we did in the case of the original pair of
formulations. Note that

(6.7) 2(1,t) — 2(0,t) = /w du — 0

ast — T.

(v) Let us examine the curves z(,)(t) = z(u,t) for fixed u € [0,1]. It is clear from the
smoothness of the solutions that these curves are C'° smooth for every 0 < v < 1. We
are interested in the limit curves

(6.8) [(t) = lim 2(u, t), r(t) = lim 2 (u, t).

u—0 u—1

The limit is well-defined for every 0 < ¢ < 7" by monotonicity of z as a function of wu.
These curves will show up in the next subsection as the interfaces of the original problem.
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Lemma 6.2 The curves z = [(t) and z = r(t) are continuous and monotone for all
0 <t<T witha <I(t) <r(t) <b (r(t) is nonincreasing and [(t) nonincreasing). As
t — T we have r(t) — I(t) — 0.

Proof. For 0 < s <t < T and 0 < u; < us < 1 we have

U2

u2
z(uy, t) — z(ug, 8) = / w(u,t) du+/ w(u, s) du+ (z(ug,t) — z(ug, s)).
u1 u1

Fix now s > 0 and let ¢ be a bit larger than s. Since w is bounded uniformly for ¢ > s
the two integrals are uniformly small as long as u; — us is small. We will fix now uy ~ 0
and let u; € (0,us) go to 0. It is clear then that z(uy,t) — z(uy, s) is uniformly small and
goes to 0 as t — s. Hence, [(t) is continuous at ¢t = s. The argument for r(¢) as u — 1 is
the same.

For classical solutions the monotonicity of the limit curves is a consequence of the
estimate

0z 0

o = oW
which must be positive at © = 0 and negative at u = 1 because w > 0 and we have zero
boundary conditions. For the general case we use the dependence of the solutions on ®
as demonstrated in [BC]. Hence, I'(t) > 0, '(t) < 0. We will see another proof below.
Note that the rest of the curves z(,)(t) need not be monotone unless wy is a rearranged

symmetrical function.

As for the last statement, it follows immediately from 6.7. It will mean for the original
problem that the solution concentrates into a vertical profile, thus showing the formation
of the desired front. [ ]

6.4 Inversion. Solutions of Type II

Thanks to the fact that 0z/0u = w > 0, we can invert the dependence between 2z and u
in the previous construction to get a function u = u(z,t) that is easily shown to satisfy
the equation

u = (P(uy))., .

Besides, u is a monotone function of z and takes the values u = 0 and v = 1 respectively
at the left and right endpoints of the domain of definition

Q. ={I(t) <z <rt)}, 1t)=2(0,1), r(t)==2(1,1).

where z(-,t) is the function defined in (6.6). Therefore, u(z,t) is a candidate to solve our
original problem if we identify the independent variable z with x — ¢, where c¢ is uniquely
determined by the relation wg(c) = 1/2.
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In order to check that we have solved the original problem we still have to check some
particulars. It is clear that v = u, is related to the original w by the formula

1

v(x, t) = m,

which simply states the derivative rule for the inverse function, and u in the second
member is given by u(z,t), z = = — ¢, as explained before. Here comes an important
point: since w takes on zero boundary values, v(z,t) diverges at the endpoints of its
domain of definition, . In other words, the solutions of the original problem u = u(z,t)
enjoy the property of infinite gradients at the endpoints of the strip where they are defined.
Since ®(00) = 0 this also means zero flux at these points, a reasonable requirement, which
explains why this condition has to be imposed on ®.

As for the initial data, we have the mass formula

Y 1
T = / wo(u) du + ¢, with ug(c) = =,
1/2 2

so that x ranges over an interval [a,b] when u goes from 0 to 1, i.e., a = 2(0,0) + ¢,
b= 2(1,0) + ¢. This rule is accompanied by the rule u = fzft) v(x,t)dx.

6.5 Uniqueness

Uniqueness of our class of monotone solutions works by translating any couple of solu-
tions of Problem (P;;) with the same initial data into the conjugate formulation. They
continue to have the same initial data. Uniqueness of weak solutions is well-known for
that equation. The Theorem is proved. m

6.6 Front formation

The asymptotic formation of a vertical front is a simple consequence of the fact that there
exists the limit
lim r(t) = lim [(t) = 7 € (a,b).

t—T t—T

The existence of the common limit follows from Lemma 6.2.

7 Uniqueness and comparison for Type Il solutions

The previous construction provides for existence and uniqueness of monotone solutions.
We tackle next the property of comparison, which is stronger that uniqueness.
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Theorem 7.1 Comparison applies to the solutions of Theorem 6.1 : let uy(z,t), i = 1,2,
be two solutions defined in a strip Sp = R x (0,T) having initial data uy;, where the
solutions and the data have been extended by 0 the the left of the definition domain, by 1
to the right. If ug(x) > upa(x), then for all z € R we have

(7.1) uy(z,t) > ug(x,t) in Sr.

Proof. The main idea is to use a contradiction argument at touching points of ordered
solutions. We proceed in several stages and need a definition, taken from the theory of
viscosity solutions in [CV]. We say that two solutions are strictly separated at a time ¢ if
uy > ug at all points intermediate to the bounding interfaces, and these are also separated.

(1) Given two solutions u; and us with ordered data we must obtain approximations
to which the contradiction argument can be applied. First, we separate the initial data of
the solutions by displacing the first solution u; to the left (the problem is invariant under
space displacements). Next, assume that we have modified u; so that it has a finite slope
on the left-hand free boundary, and us so that it has a finite slope on the hand-side free
boundary. In this situation we argue on the first point and time (z, ¢y) where the graphs
of both solutions touch and discover that: (i) it cannot happen with value u € (0, 1) by the
Strong Maximum Principle; (ii) not on the left-hand side where u; = us = 0, because at
such a point we have the right derivative: uy, = 400 while u, 4 is finite, which contradicts
the fact that we still must have u;(-,ty) > ua(-,tp); (ili) same argument applies to the
right-hand side where u; = uy = 1. We conclude that such solutions u; and us cannot
touch, hence strict separation is preserved in time, and comparison u; > uy holds in the
strong sense, i.e., with strict separation at all times.

(2) We must now prove that the original solutions can be approximated by solutions
with finite derivatives on the lateral boundaries. This can be obtained by an easy mod-
ification of the previous construction. Thus, if u is the constructed solution, it can be
approximated at the level of the conjugate problem by putting the value w = ¢ on the
left-hand side boundary v = 0. It is rather standard monotonicity argument that w. — w
in the limit ¢ — 0. Undoing the transformation this means that u. converges to the orig-
inal constructed solution u. A similar construction applies to uy by modifying w, at the
border u = 1. After displacement of u. we get uy (v + 0,t) > ug.(z,t). Let now ¢ — 0.
[ |

We derive next another proof of the monotonicity of the interfaces.
Corollary 7.2 The interfaces are monotone in all cases.

Proof. Given a solution u with initial interfaces a and b, we may place a very steep solution
@ to the left, i.e., with @ = 0 for x < a — 2¢, 4 =1 for x > a — . If ¢’ is symmetric then
the interfaces are monotone, hence the left interface of @ lies to the right of @ — 2e. Then
4 > wu for all times, hence [(t) > a — 2¢, and in the limit [(¢) > a. The same argument
applies taking origin of times at any y € (0,7"), hence [(¢) is monotonically increasing in
(0,T). Likewise, r(t) is proved to be monotone decreasing. m
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8 Self-similarity and asymptotics for power nonlinearities

In the power case, where ®(s) = (1/m)s™, the asymptotic condition “®(00) finite” means
m < 0. Then ¥(s) = (1/q)s? with ¢ = —m > 0. Reminder: we consider only monotone
solutions of (3.1) and nonnegative solutions of (4.1), and ¢ = 1 + 2« in the notation of
the first section. Therefore, o > —1/2 means ¢ > 0.

There is a unique solution of problem (P,) with initial data as in Section 6. The large
time behaviour depends on the exponent. For ¢ > 1 solutions are defined and nontrivial
globally in time, while for 0 < ¢ < 1 they exist only in a finite interval 0 < ¢ < T and
w(zx,t) — 0 uniformly as t — T.

As for the exact behaviour, if @ # 0 the self-similar behaviour reduces to writing
U = ®(&) with € = 2t/ and integrating the ODE

1

8.1 P = g (P)2Te

(8.1) 5 £ (@)

to obtain in the monotone region

82 P(6) = A(K? — )7V A= (20/(1+a))

and a constant K > 0 determined by the end values min ®(£) = 0, max ®(¢) = 1. For the
large-time behaviour of general solutions we have to make a study in different cases. We
start with o = 0 which was not included before.

Case o = 0, hence ¢ = 1. The conjugate equation is the linear heat equation. It is
well-known that the solutions behave for large times like

(8.3) w(u,t) ~ CL W (u,t) = Cre ™ fi(u),

where A\ = 72 is the first eigenvalue of the Laplacian in [0, 1], fi(z) = sin(7u) is the first
eigenfunction, and C; > 0 is a constant that depends on the initial data. Here and in the
sequel we denote by capital letters the quantities corresponding to self-similar solutions.
We get the intermediate step

(8.4) r—c=z(ut)~ Z(u,t) = —Ce ™ cos(ru),

with C' = Cy/m. This formula can be viewed as an implicit expression of v = u(x,t)
defined in the space between the interfaces. Note that u = 1/2 for x = ¢ and all ¢t > 0.
Putting ¢ = 0 we get for the self-similar solution

(8.5) Uz, t) = F(ze™t/C),

where F’ behaves like d~'/? near the end-values or interfaces, d being the distance to these
points. Moreover, the interfaces

(8.6) R(t)=CR(t), L(t)=—-CRy(t), with Ri(t)=¢"".
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These estimates become the first order approximation when we consider general solutions:
(8.7) w(z,t) ~ F(ze ™)), r(t), l(t) ~c+ C Ry(t).
The gradients are given by

1 1 1
: o t)=—n~—eM—
(88) ta (1) w C° sin(7u)

They blow up exponentially as ¢ — oo and like O(d~'/?) at the interfaces, where d is
distance to the interface.

Case a > 0, hence ¢ > 1. This is the case treated in [BO1] by the direct self-similar
method. We recover the behaviour of general solutions from the conjugate problem. We
have a self-similar asymptotic expression in the form of separation of variables:

(8.9) w(u, t) ~ W(u,t) = 79D f (),
where f,(u) > 0 is the unique solution of the associated elliptic problem

(o uf =0 i 01), p=tg

and f = 0 at the endpoints. This problem was studied in [AP]. In this case there is no
free constant, i.e., the behaviour is universal. From it we get the intermediate asymptotic
estimates

(8.10) r—c=z2(ut) ~t Y Vg (u).
This formula defines implicitly u = u(x,t) in the space between the interfaces as
(8.11) u~ Fy((z —c)t/e D),

Since f(u) behaves exactly like O(u'/9) near the end point = 0, and O((1 — u)'/?) near
u = 1, it follows after integration and inversion that u = F behaves like O(d(@/(@+D),
where d is the distance to the interfaces. These are given by

(8.12) (t) =c—Cyt=@ D p(t) = ¢4 C e~/
The gradient is given by

1
fo(u)’

and blows up like O(¢'/2%) as t — oo and like O(d™") at the interfaces, where v =
1/(g+1)=1/(2a +2).

(8.13) U (x,t) ~ /@D
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Case —1/2 < a < 0, hence 0 < ¢ < 1. This is a new case, not included in the
modelization of [MS, B01]. We get solutions from the conjugate problem which exist for
a finite time 7" and behave as ¢ — 1" like the separation of variables formula:

(8.14) w(u,t) ~ (T — )= £ (u),
where f,(z) > 0 is the unique solution of the associated elliptic problem

() +pf=0 in 01, p=—1,

and f = 0 at the endpoints, with no free constant. We get by integration

(8.15) z—c=2(u,t) ~ (T — )/ Dg (u).

This formula defines implicitly u = u(z, t) in the space between the converging interfaces
(8.16) I(t)=c—C(T-t)/O9,  r(t)=c+C(T —t)/19,

The gradient is given by

1
fq(u),

and blows up like O((T — t)'/?*) as t — T and like O(d™") at the interfaces, v as before.

(8.17) g, t) ~ (T — t)—l/(l—q)

9 Asymptotic estimates for more general ¢

Assumptions on ® to behave like a power at infinity guarantee that the asymptotic be-
haviour is as predicted in the power case. Thus, Bertsch and Peletier study in [BP] the
asymptotic behaviour of equation (6.1) written in the form

B(U)t = Ugg -

In our application the space variable z becomes u and B = ¥~!. They assume that
£(0) =0, f'(s) >0 for s > 0 and

B Sﬁ”(s)
L= 50

for all small 0 < s < sp and some « € (0,1). They also need the more stringent condition
that the limit .,
o(s) = sB"(es)

~ B FE

<«
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exists for every s > 0. This limit is necessarily of the form o(s) = s™ for some m € [0, 1).
Those conditions cover in particular powers ¥(s) = s? with ¢ = 1/m > 1, as well as the
exponential ¥(s) = e /%, and any other function resembling such examples near s = 0.

Under these restrictions, they establish an asymptotic separation-of-variables result
that, when translated to our setting, means that the solution w(u, t) of the Cauchy prob-
lem (6.1) behaves as t — oo in the separate variable form w ~ y(¢) f(u), more precisely,

i 200 _
(9.) tim 2 — (),

where y(t) is the solution y' = —y'/9, i.e. y(t) ~ ¢t~V and f is the profile obtained
as in the previous section. This means that the analysis of the previous section is justified
for almost power-like flux functions if they resemble a power with exponent ¢ > 1. The
cases ¢ = 1 and ¢ < 1 should be justified in a similar manner. We note that a similar
calculation for the Cauchy problem was done in [PV].

We point out that these restrictions on the nonlinearity are satisfied by the equation
proposed in the image processing model, (1.4), hence the results apply to that model.

10  Numerical experiments

We have computed the solutions of the free boundary problem (Py)) by solving the
conjugate problem, which is a homogeneous Neumann problem, in the cases a =0, a =1
and o = —1/2. The conjugate equations are p-Laplacian equations with p = 2,4 and
3/2. The computations have been done with symmetrical data x¢(u) = — cos(mu) and
asymmetrical xo(u) = 2u* — (1/2)u® — 1. The last two examples stabilize in finite time
(since o < 0).
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11 Discussion and conclusions

We have established the well-posedness of a free boundary problem that represents a
one-dimensional version of the model for image contour enhancement. We have also
established the asymptotic behaviour and its rates. The results apply to a large class
of equations, which enlarges the scope of the results of [B01, MS]. We have performed
a classification of the solutions and their properties according to the properties of the
constitutive function ®.

We have used as a framework the theory nonlinear parabolic equations of diffusive
type, or nonlinear diffusion equations for short. These equations are typically used in
describing processes of mass diffusion or thermal propagation (with or without additional
effects, like convection or reaction). Here they appear in image processing. The types used
here cover the model cases known as p-Laplacian equations and porous medium equations
or their variants.
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The analysis is technically performed by means of a series of remarkable transforma-
tions that lead to conjugate problems that are easier to analyze. These transformations
are related to the Backlund transform.

There are a number of interesting consequences of the mathematical analysis that we
sum up next.

e GENERALITY. The first one is the observation that solutions with gradient blowup
can be obtained for the nonlinear diffusion equation with a large class of constitutive
functions. Namely, ® can be any continuous nondecreasing function defined for s > 0
such that ®(c0) is bounded. We have made for convenience the assumption of smoothness
and strict monotonicity for 0 < s < oo. Actually, the constitutive function can be more
general, even a discontinuous maximal monotone graph as in [Be72, Brz]. But such a
generality is not practical here, though the classification and results go through after
some heavy work. A general presentation of that generality will be the object of the work
[VDbk].

e FOCUSING IN FINITE TIME. In the case of powers ®(s) ~ s™ the condition means
m < 0, and not only m < —1 as considered before. Moreover, the new range 0 > m > —1
leads to a very fast evolution which arrives at a vertical front in finite time. This idea
might have an applied interest.

e COEXISTENCE OF TYPES. We have also a so-called class of solutions of Type I that fall
into the scope of the standard parabolic theory. They exist under the condition that the
integral [(®'(s)/s)ds converges at s = co, which in the case of powers means m > —1.
This fact leads to an interesting observation: there is a range of co-existence of solutions
of Type I and II for —1 < m < 0, i.e., —1/2 < a < 0. This may be of interest from
the theoretical point of view: two different problems share the same equation and same
initial data, but the solutions differ as a consequence of a further choice: of existence or
not existence of a free boundary.

e THE PRESSURE. There is a way of formally unifying the standard theory of free-
boundary solutions for the porous medium equation with the present theory of free-
boundaries in fast diffusion. This works by means of the new variable called pressure that
for an equation of the form v, = ®(v),, is defined as

(11.2) p(v) = / ) g,

S

If the integral is convergent at v = 0 then the choice a = 0 is made. Otherwise, any value
in the domain of ® is good. Indeed, the similarity in the behaviour of the pressure of
Porous Medium case, ®(u) = u™, m > 1, and our case (which lies in the power range
m < 0) is seen when we write the partial differential equation for v which reads

(11.3) vy = o(v)Av + |[Vol?,

with o(v) = ®'(u). For ®(u) = cu™ we get v = emu™"'/(m—1) and o(v) = (m—1)v. The
paper [V03c] explores further the properties of free-boundary solutions for the pressure of
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fast diffusion equation. Note that, contrary to the porous medium case where the support
of the pressure solutions expands in time, in our case it shrinks in time.

e GREY LEVELS AS END VALUES. Another variation of the main theme is to consider
solutions losing the white or black level. This is investigated in the paper [RV95], where
many solutions of the differentiated equation for v are obtained in the range 0 > m > —1
with the same initial data by assigning fluxes at infinity:

(11.4) lim (v 'v,) = —f(t), lim (v™ tv,) = g(t),

T—r00 T—r—00
for bounded functions f,g > 0. In terms of v it means in particular that we can obtain a
free-boundary solution with a decreasing value of highest color level,

w(oo,t) = F(t) =1 — /Otf(t) dt < 1.

Analogously, we can impose an increasing value for the lowest color level,

(=00, ) = G(t) = /tg(t) dt > 0.

e NON-MONOTONE FRONTS. There is a gap in the theory we have developed, namely
that we assumed that the front is monotone in the space direction, in other words, that
u is nondecreasing as a function of . The limitations of fast diffusion equations to admit
non-monotone solutions are not accidental. In the paper [RV02] it is proved that the
model equation u; = ™ tu,, does not admit non-monotone solutions if m < 0. In terms
of the equation for v = u, it means that there are no solutions with both signs. However,
there is hope when using functions ® like in (1.4) that are degenerate at infinity, i.e.,
®’'(c0) = 0, but regular at all other values, e.g., ® € C'(R). Indeed, the problem with
the monotonicity happens because of the singularity at u, = 0 which forbids maxima
or minima, while our main interest is in the free-boundary that is governed by the large
values, u, — oo. This question will be investigated separately.

e NON-MONOTONE NONLINEARITIES. Note that in our problem setting the equation
is forward parabolic, and the backward movement of the interface is due to the effect
of the singular boundary condition, which happens to be compatible with the equation
for the appropriate class of functions ® (e.g., for powers m < 0). In the spirit of the
Perona-Malik model, situations can be considered where ® is not monotone, hence the
equation is not parabolic. A regularization is then needed so that one faces a regularized
forward-backward diffusion problem. See in this respect [BBDU] and [Wit]. This subject
is again under study.
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